Tutorial in biostatistics: competing risks and multi-state models.
نویسندگان
چکیده
Standard survival data measure the time span from some time origin until the occurrence of one type of event. If several types of events occur, a model describing progression to each of these competing risks is needed. Multi-state models generalize competing risks models by also describing transitions to intermediate events. Methods to analyze such models have been developed over the last two decades. Fortunately, most of the analyzes can be performed within the standard statistical packages, but may require some extra effort with respect to data preparation and programming. This tutorial aims to review statistical methods for the analysis of competing risks and multi-state models. Although some conceptual issues are covered, the emphasis is on practical issues like data preparation, estimation of the effect of covariates, and estimation of cumulative incidence functions and state and transition probabilities. Examples of analysis with standard software are shown.
منابع مشابه
Comparison of Random Survival Forests for Competing Risks and Regression Models in Determining Mortality Risk Factors in Breast Cancer Patients in Mahdieh Center, Hamedan, Iran
Introduction: Breast cancer is one of the most common cancers among women worldwide. Patients with cancer may die due to disease progression or other types of events. These different event types are called competing risks. This study aimed to determine the factors affecting the survival of patients with breast cancer using three different approaches: cause-specific hazards regression, subdistri...
متن کاملFactors Affecting the Risk of Death in Patients with Rectal Cancer: An Analysis in the Presence of Competitive Risks
Background and Objectives: The incidence of rectal cancer is increasing in developing societies, especially in younger age groups. The aim of this study was to evaluate the factors affecting the survival of patients with rectal cancer in the presence of competing risks. Methods: In this retrospective cohort study, the data of 121 patients with rectal cancer during 2001-2017 were studied. De...
متن کاملRandom survival forests for competing risks.
We introduce a new approach to competing risks using random forests. Our method is fully non-parametric and can be used for selecting event-specific variables and for estimating the cumulative incidence function. We show that the method is highly effective for both prediction and variable selection in high-dimensional problems and in settings such as HIV/AIDS that involve many competing risks.
متن کاملMissing covariates in competing risks analysis
Studies often follow individuals until they fail from one of a number of competing failure types. One approach to analyzing such competing risks data involves modeling the cause-specific hazards as functions of baseline covariates. A common issue that arises in this context is missing values in covariates. In this setting, we first establish conditions under which complete case analysis (CCA) i...
متن کاملMarkov chains and semi-Markov models in time-to-event analysis.
A variety of statistical methods are available to investigators for analysis of time-to-event data, often referred to as survival analysis. Kaplan-Meier estimation and Cox proportional hazards regression are commonly employed tools but are not appropriate for all studies, particularly in the presence of competing risks and when multiple or recurrent outcomes are of interest. Markov chain models...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Statistics in medicine
دوره 26 11 شماره
صفحات -
تاریخ انتشار 2007